1. About the Documentation
This section provides a brief overview of Reactor Netty
reference documentation. You do not
need to read this guide in a linear fashion. Each piece stands on its own, though they
often refer to other pieces.
1.1. Latest Version and Copyright Notice
The Reactor Netty
reference guide is available as HTML
documents. The latest copy is available
at https://projectreactor.io/docs/netty/release/reference/index.html
Copies of this document may be made for your own use and for distribution to others,
provided that you do not charge any fee for such copies and further provided that each
copy contains this Copyright Notice
, whether distributed in print or electronically.
1.2. Contributing to the Documentation
The reference guide is written in Asciidoc, and you can find its sources at https://github.com/reactor/reactor-netty/tree/master/docs/asciidoc.
If you have an improvement, we will be happy to get a pull request from you!
We recommend that you check out a local copy of the repository so that you can
generate the documentation by using the asciidoctor
Gradle task and checking the
rendering. Some of the sections rely on included files, so GitHub
rendering is
not always complete.
To facilitate documentation edits, most sections have a link at the end that opens
an edit UI directly on GitHub for the main source file for that section. These links are
only present in the HTML5 version of this reference guide. They look like the following link:
Suggest Edit to About the Documentation.
|
1.3. Getting Help
There are several ways to reach out for help with Reactor Netty
. You can:
-
Get in touch with the community on Gitter.
-
Ask a question on stackoverflow.com at
reactor-netty
. -
Report bugs in
Github
issues. The repository is the following: reactor-netty.
All of Reactor Netty is open source,
including this
documentation.
|
2. Getting Started
This section contains information that should help you get going with Reactor Netty
. It
includes the following information:
2.1. Introducing Reactor Netty
Suited for Microservices Architecture, Reactor Netty
offers
backpressure-ready network engines for HTTP
(including Websockets), TCP
, and UDP
.
2.2. Prerequisites
Reactor Netty
runs on Java 8
and above.
It has transitive dependencies on:
-
Reactive Streams v1.0.3
-
Reactor Core v3.x
-
Netty v4.1.x
2.3. Understanding the BOM and versioning scheme
Reactor Netty
is part of the Project Reactor BOM
(since the Aluminium
release train).
This curated list groups artifacts that are meant to work well together, providing
the relevant versions despite potentially divergent versioning schemes in these artifacts.
The versioning scheme has changed between 0.9.x and 1.0.x (Dysprosium and Europium). |
Artifacts follow a versioning scheme of MAJOR.MINOR.PATCH-QUALIFIER
while the BOM is versioned using a CalVer inspired scheme of YYYY.MINOR.PATCH-QUALIFIER
, where:
-
MAJOR
is the current generation of Reactor, where each new generation can bring fundamental changes to the structure of the project (which might imply a more significant migration effort) -
YYYY
is the year of the first GA release in a given release cycle (like 1.0.0 for 1.0.x) -
.MINOR
is a 0-based number incrementing with each new release cycle-
in the case of projects, it generally reflects wider changes and can indicate a moderate migration effort
-
in the case of the BOM it allows discerning between release cycles in case two get first released the same year
-
-
.PATCH
is a 0-based number incrementing with each service release -
-QUALIFIER
is a textual qualifier, which is omitted in the case of GA releases (see below)
The first release cycle to follow that convention is thus 2020.0.x
, codename Europium
.
The scheme uses the following qualifiers (note the use of dash separator), in order:
-
-M1
..-M9
: milestones (we don’t expect more than 9 per service release) -
-RC1
..-RC9
: release candidates (we don’t expect more than 9 per service release) -
-SNAPSHOT
: snapshots -
no qualifier for GA releases
Snapshots appear higher in the order above because, conceptually, they’re always "the freshest pre-release" of any given PATCH. Even though the first deployed artifact of a PATCH cycle will always be a -SNAPSHOT, a similarly named but more up-to-date snapshot would also get released after eg. a milestone or between release candidates. |
Each release cycle is also given a codename, in continuity with the previous codename-based scheme, which can be used to reference it more informally (like in discussions, blog posts, etc…). The codenames represent what would traditionally be the MAJOR.MINOR number. They (mostly) come from the Periodic Table of Elements, in increasing alphabetical order.
Up until Dysprosium, the BOM was versioned using a release train scheme with a codename followed by a qualifier, and the qualifiers were slightly different. For example: Aluminium-RELEASE (first GA release, would now be something like YYYY.0.0), Bismuth-M1, Californium-SR1 (service release would now be something like YYYY.0.1), Dysprosium-RC1, Dysprosium-BUILD-SNAPSHOT (after each patch, we’d go back to the same snapshot version. would now be something like YYYY.0.X-SNAPSHOT so we get 1 snapshot per PATCH) |
2.4. Getting Reactor Netty
As mentioned earlier, the easiest way to use
Reactor Netty
in your core is to use the BOM
and
add the relevant dependencies to your project. Note that, when adding such a dependency,
you must omit the version so that the version gets picked up from the BOM
.
However, if you want to force the use of a specific artifact’s version, you can specify
it when adding your dependency as you usually would. You can also forego the BOM
entirely
and specify dependencies by their artifact versions.
2.4.1. Maven Installation
The BOM
concept is natively supported by Maven
. First, you need to import the BOM
by
adding the following snippet to your pom.xml
. If the top section
(dependencyManagement
) already exists in your pom, add only the contents.
<dependencyManagement> (1)
<dependencies>
<dependency>
<groupId>io.projectreactor</groupId>
<artifactId>reactor-bom</artifactId>
<version>Dysprosium-SR10</version> (2)
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
1 | Notice the dependencyManagement tag. This is in addition to the regular
dependencies section. |
2 | As of this writing, Dysprosium-SR10 is the latest version of the BOM .
Check for updates at https://github.com/reactor/reactor/releases. |
Next, add your dependencies to the relevant reactor projects, as usual (except without a
<version>
). The following listing shows how to do so:
<dependencies>
<dependency>
<groupId>io.projectreactor.netty</groupId>
<artifactId>reactor-netty</artifactId> (1)
(2)
</dependency>
</dependencies>
1 | Dependency on Reactor Netty |
2 | No version tag here |
2.4.2. Gradle Installation
The BOM
concept is supported in Gradle since version 5.
The following listing shows how to import the BOM
and add a dependency to Reactor Netty
:
dependencies {
// import a BOM
implementation platform('io.projectreactor:reactor-bom:Dysprosium-SR10') (1)
// define dependencies without versions
implementation 'io.projectreactor.netty:reactor-netty' (2)
}
1 | As of this writing, Dysprosium-SR10 is the latest version of the BOM .
Check for updates at https://github.com/reactor/reactor/releases. |
2 | There is no third : separated section for the version. It is taken from the BOM . |
2.4.3. Milestones and Snapshots
Milestones and developer previews are distributed through the Spring Milestones
repository rather than Maven Central
. To add it to your build configuration
file, use the following snippet:
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones Repository</name>
<url>https://repo.spring.io/milestone</url>
</repository>
</repositories>
For Gradle, use the following snippet:
repositories {
maven { url 'https://repo.spring.io/milestone' }
mavenCentral()
}
Similarly, snapshots are also available in a separate dedicated repository (for both Maven and Gradle):
<repositories>
<repository>
<id>spring-snapshots</id>
<name>Spring Snapshot Repository</name>
<url>https://repo.spring.io/snapshot</url>
</repository>
</repositories>
repositories {
maven { url 'https://repo.spring.io/snapshot' }
mavenCentral()
}
3. TCP Server
Reactor Netty
provides an easy to use and configure
TcpServer
.
It hides most of the Netty
functionality that is needed to create a TCP
server
and adds Reactive Streams
backpressure.
3.1. Starting and Stopping
To start a TCP
server, you must create and configure a
TcpServer
instance.
By default, the host
is configured for any local address, and the system picks up an ephemeral port
when the bind
operation is invoked. The following example shows how to create and
configure a TcpServer
instance:
import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;
public class Application {
public static void main(String[] args) {
DisposableServer server =
TcpServer.create() (1)
.bindNow(); (2)
server.onDispose()
.block();
}
}
1 | Creates a TcpServer
instance that is ready for configuring. |
2 | Starts the server in a blocking fashion and waits for it to finish initializing. |
The returned DisposableServer
offers a simple server API, including disposeNow()
,
which shuts the server down in a blocking fashion.
3.1.1. Host and Port
To serve on a specific host
and port
, you can apply the following configuration to the TCP
server:
import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;
public class Application {
public static void main(String[] args) {
DisposableServer server =
TcpServer.create()
.host("localhost") (1)
.port(8080) (2)
.bindNow();
server.onDispose()
.block();
}
}
1 | Configures the TCP server host |
2 | Configures the TCP server port |
3.2. Writing Data
In order to send data to a connected client, you must attach an I/O handler.
The I/O handler has access to NettyOutbound
to be able to write data. The following example shows how to attach an I/O handler:
import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;
public class Application {
public static void main(String[] args) {
DisposableServer server =
TcpServer.create()
.handle((inbound, outbound) -> outbound.sendString(Mono.just("hello"))) (1)
.bindNow();
server.onDispose()
.block();
}
}
1 | Sends hello string to the connected clients |
3.3. Consuming Data
In order to receive data from a connected client, you must attach an I/O handler.
The I/O handler has access to NettyInbound
to be able to read data. The following example shows how to use it:
import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;
public class Application {
public static void main(String[] args) {
DisposableServer server =
TcpServer.create()
.handle((inbound, outbound) -> inbound.receive().then()) (1)
.bindNow();
server.onDispose()
.block();
}
}
1 | Receives data from the connected clients |
3.4. Lifecycle Callbacks
The following lifecycle callbacks are provided to let you extend the TCP
server:
-
doOnBind
: Invoked when the server channel is about to bind. -
doOnBound
: Invoked when the server channel is bound. -
doOnConnection
: Invoked when a remote client is connected -
doOnUnbound
: Invoked when the server channel is unbound.
The following example uses the doOnConnection
callback:
import io.netty.handler.timeout.ReadTimeoutHandler;
import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;
import java.util.concurrent.TimeUnit;
public class Application {
public static void main(String[] args) {
DisposableServer server =
TcpServer.create()
.doOnConnection(conn ->
conn.addHandler(new ReadTimeoutHandler(10, TimeUnit.SECONDS))) (1)
.bindNow();
server.onDispose()
.block();
}
}
1 | Netty pipeline is extended with ReadTimeoutHandler when a remote client is connected. |
3.5. TCP-level Configurations
This section describes three kinds of configuration that you can use at the TCP level:
3.5.1. Setting Channel Options
By default, the TCP
server is configured with the following options:
TcpServerBind() {
Map<ChannelOption<?>, Boolean> childOptions = new HashMap<>(2);
childOptions.put(ChannelOption.AUTO_READ, false);
childOptions.put(ChannelOption.TCP_NODELAY, true);
this.config = new TcpServerConfig(
Collections.singletonMap(ChannelOption.SO_REUSEADDR, true),
childOptions,
() -> new InetSocketAddress(DEFAULT_PORT));
}
If additional options are necessary or changes to the current options are needed, you can apply the following configuration:
import io.netty.channel.ChannelOption;
import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;
public class Application {
public static void main(String[] args) {
DisposableServer server =
TcpServer.create()
.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 10000)
.bindNow();
server.onDispose()
.block();
}
}
You can find more about Netty
channel options at the following links:
3.5.2. Using a Wire Logger
Reactor Netty provides wire logging for when the traffic between the peers has to be inspected.
By default, wire logging is disabled.
To enable it, you must set the logger reactor.netty.tcp.TcpServer
level to DEBUG
and apply the following configuration;
import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;
public class Application {
public static void main(String[] args) {
DisposableServer server =
TcpServer.create()
.wiretap(true) (1)
.bindNow();
server.onDispose()
.block();
}
}
1 | Enables the wire logging |
3.5.3. Using an Event Loop Group
By default, the TCP
server uses an “Event Loop Group,” where the number of the worker threads equals the number of
processors available to the runtime on initialization (but with a minimum value of 4). When you need a different configuration,
you can use one of the LoopResource#create
methods.
The default configuration for the Event Loop Group
is the following:
* Default worker thread count, fallback to available processor
* (but with a minimum value of 4)
*/
public static final String IO_WORKER_COUNT = "reactor.netty.ioWorkerCount";
/**
* Default selector thread count, fallback to -1 (no selector thread)
*/
public static final String IO_SELECT_COUNT = "reactor.netty.ioSelectCount";
/**
* Default worker thread count for UDP, fallback to available processor
* (but with a minimum value of 4)
*/
public static final String UDP_IO_THREAD_COUNT = "reactor.netty.udp.ioThreadCount";
/**
* Default quiet period that guarantees that the disposal of the underlying LoopResources
* will not happen, fallback to 2 seconds.
*/
public static final String SHUTDOWN_QUIET_PERIOD = "reactor.netty.ioShutdownQuietPeriod";
/**
* Default maximum amount of time to wait until the disposal of the underlying LoopResources
* regardless if a task was submitted during the quiet period, fallback to 15 seconds.
*/
public static final String SHUTDOWN_TIMEOUT = "reactor.netty.ioShutdownTimeout";
/**
* Default value whether the native transport (epoll, kqueue) will be preferred,
* fallback it will be preferred when available
*/
public static final String NATIVE = "reactor.netty.native";
If changes to the these settings are needed, you can apply the following configuration:
import reactor.netty.DisposableServer;
import reactor.netty.resources.LoopResources;
import reactor.netty.tcp.TcpServer;
public class Application {
public static void main(String[] args) {
LoopResources loop = LoopResources.create("event-loop", 1, 4, true);
DisposableServer server =
TcpServer.create()
.runOn(loop)
.bindNow();
server.onDispose()
.block();
}
}
3.6. SSL and TLS
When you need SSL or TLS, you can apply the configuration shown in the next listing.
By default, if OpenSSL
is available,
SslProvider.OPENSSL
provider is used as a provider. Otherwise
SslProvider.JDK
is used.
Switching the provider can be done through
SslContextBuilder
or by setting -Dio.netty.handler.ssl.noOpenSsl=true
.
The following example uses SslContextBuilder
:
import io.netty.handler.ssl.SslContextBuilder;
import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;
import java.io.File;
public class Application {
public static void main(String[] args) {
File cert = new File("certificate.crt");
File key = new File("private.key");
SslContextBuilder sslContextBuilder = SslContextBuilder.forServer(cert, key);
DisposableServer server =
TcpServer.create()
.secure(spec -> spec.sslContext(sslContextBuilder))
.bindNow();
server.onDispose()
.block();
}
}
3.6.1. Server Name Indication
You can configure the TCP
server with multiple SslContext
mapped to a specific domain.
An exact domain name or a domain name containing a wildcard can be used when configuring the SNI
mapping.
The following example uses a domain name containing a wildcard:
import io.netty.handler.ssl.SslContext;
import io.netty.handler.ssl.SslContextBuilder;
import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;
import java.io.File;
public class Application {
public static void main(String[] args) throws Exception {
File defaultCert = new File("default_certificate.crt");
File defaultKey = new File("default_private.key");
File testDomainCert = new File("default_certificate.crt");
File testDomainKey = new File("default_private.key");
SslContext defaultSslContext = SslContextBuilder.forServer(defaultCert, defaultKey).build();
SslContext testDomainSslContext = SslContextBuilder.forServer(testDomainCert, testDomainKey).build();
DisposableServer server =
TcpServer.create()
.secure(spec -> spec.sslContext(defaultSslContext)
.addSniMapping("*.test.com",
testDomainSpec -> testDomainSpec.sslContext(testDomainSslContext)))
.bindNow();
server.onDispose()
.block();
}
}
3.7. Metrics
The TCP server supports built-in integration with Micrometer
.
It exposes all metrics with a prefix of reactor.netty.tcp.server
.
The following table provides information for the TCP server metrics:
metric name | type | description |
---|---|---|
reactor.netty.tcp.server.data.received |
DistributionSummary |
Amount of the data received, in bytes |
reactor.netty.tcp.server.data.sent |
DistributionSummary |
Amount of the data sent, in bytes |
reactor.netty.tcp.server.errors |
Counter |
Number of errors that occurred |
reactor.netty.tcp.server.tls.handshake.time |
Timer |
Time spent for TLS handshake |
These additional metrics are also available:
ByteBufAllocator
metrics
metric name | type | description |
---|---|---|
reactor.netty.bytebuf.allocator.used.heap.memory |
Gauge |
The number of the bytes of the heap memory |
reactor.netty.bytebuf.allocator.used.direct.memory |
Gauge |
The number of the bytes of the direct memory |
reactor.netty.bytebuf.allocator.used.heap.arenas |
Gauge |
The number of heap arenas (when |
reactor.netty.bytebuf.allocator.used.direct.arenas |
Gauge |
The number of direct arenas (when |
reactor.netty.bytebuf.allocator.used.threadlocal.caches |
Gauge |
The number of thread local caches (when |
reactor.netty.bytebuf.allocator.used.tiny.cache.size |
Gauge |
The size of the tiny cache (when |
reactor.netty.bytebuf.allocator.used.small.cache.size |
Gauge |
The size of the small cache (when |
reactor.netty.bytebuf.allocator.used.normal.cache.size |
Gauge |
The size of the normal cache (when |
reactor.netty.bytebuf.allocator.used.chunk.size |
Gauge |
The chunk size for an arena (when |
The following example enables that integration:
import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;
public class Application {
public static void main(String[] args) {
DisposableServer server =
TcpServer.create()
.metrics(true) (1)
.bindNow();
server.onDispose()
.block();
}
}
1 | Enables the built-in integration with Micrometer |
When TCP server metrics are needed for an integration with a system other than Micrometer
or you want
to provide your own integration with Micrometer
, you can provide your own metrics recorder, as follows:
import reactor.netty.DisposableServer;
import reactor.netty.channel.ChannelMetricsRecorder;
import reactor.netty.tcp.TcpServer;
import java.net.SocketAddress;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
DisposableServer server =
TcpServer.create()
.metrics(true, CustomChannelMetricsRecorder::new) (1)
.bindNow();
server.onDispose()
.block();
}
1 | Enables TCP server metrics and provides ChannelMetricsRecorder implementation. |
3.8. Unix Domain Sockets
The TCP
server supports Unix Domain Sockets (UDS) when native transport is in use.
The following example shows how to use UDS support:
import io.netty.channel.unix.DomainSocketAddress;
import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;
public class Application {
public static void main(String[] args) {
DisposableServer server =
TcpServer.create()
.bindAddress(() -> new DomainSocketAddress("/tmp/test.sock")) (1)
.bindNow();
server.onDispose()
.block();
}
}
1 | Specifies DomainSocketAddress that will be used |
Suggest Edit to "TCP Server"
4. TCP Client
Reactor Netty provides the easy-to-use and easy-to-configure
TcpClient
.
It hides most of the Netty functionality that is needed in order to create a TCP
client
and adds Reactive Streams backpressure.
4.1. Connect and Disconnect
To connect the TCP
client to a given endpoint, you must create and configure a
TcpClient
instance.
By default, the host
is localhost
and the port
is 12012
.
The following example shows how to create a TcpClient
:
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;
public class Application {
public static void main(String[] args) {
Connection connection =
TcpClient.create() (1)
.connectNow(); (2)
connection.onDispose()
.block();
}
}
1 | Creates a TcpClient
instance that is ready for configuring. |
2 | Connects the client in a blocking fashion and waits for it to finish initializing. |
The returned Connection
offers a simple connection API, including disposeNow()
,
which shuts the client down in a blocking fashion.
4.1.1. Host and Port
To connect to a specific host
and port
, you can apply the following configuration to the TCP
client.
The following example shows how to do so:
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;
public class Application {
public static void main(String[] args) {
Connection connection =
TcpClient.create()
.host("example.com") (1)
.port(80) (2)
.connectNow();
connection.onDispose()
.block();
}
}
1 | Configures the TCP host |
2 | Configures the TCP port |
4.2. Writing Data
To send data to a given endpoint, you must attach an I/O handler.
The I/O handler has access to NettyOutbound
to be able to write data.
import reactor.core.publisher.Mono;
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;
public class Application {
public static void main(String[] args) {
Connection connection =
TcpClient.create()
.host("example.com")
.port(80)
.handle((inbound, outbound) -> outbound.sendString(Mono.just("hello"))) (1)
.connectNow();
connection.onDispose()
.block();
}
}
1 | Sends hello string to the endpoint. |
4.3. Consuming Data
To receive data from a given endpoint, you must attach an I/O handler.
The I/O handler has access to NettyInbound
to be able to read data. The following example shows how to do so:
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;
public class Application {
public static void main(String[] args) {
Connection connection =
TcpClient.create()
.host("example.com")
.port(80)
.handle((inbound, outbound) -> inbound.receive().then()) (1)
.connectNow();
connection.onDispose()
.block();
}
}
1 | Receives data from a given endpoint |
4.4. Lifecycle Callbacks
The following lifecycle callbacks are provided to let you extend the TCP
client.
-
doOnConnect
: Invoked when the channel is about to connect. -
doOnConnected
: Invoked after the channel has been connected. -
doOnDisconnected
: Invoked after the channel has been disconnected.
The following example uses the doOnConnected
callback:
import io.netty.handler.timeout.ReadTimeoutHandler;
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;
import java.util.concurrent.TimeUnit;
public class Application {
public static void main(String[] args) {
Connection connection =
TcpClient.create()
.host("example.com")
.port(80)
.doOnConnected(conn ->
conn.addHandler(new ReadTimeoutHandler(10, TimeUnit.SECONDS))) (1)
.connectNow();
connection.onDispose()
.block();
}
}
1 | Netty pipeline is extended with ReadTimeoutHandler when the channel has been connected. |
4.5. TCP-level Configurations
This section describes three kinds of configuration that you can use at the TCP level:
4.5.1. Channel Options
By default, the TCP
client is configured with the following options:
provider,
Collections.singletonMap(ChannelOption.AUTO_READ, false),
() -> AddressUtils.createUnresolved(NetUtil.LOCALHOST.getHostAddress(), DEFAULT_PORT));
}
TcpClientConnect(TcpClientConfig config) {
If additional options are necessary or changes to the current options are needed, you can apply the following configuration:
import io.netty.channel.ChannelOption;
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;
public class Application {
public static void main(String[] args) {
Connection connection =
TcpClient.create()
.host("example.com")
.port(80)
.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 10000)
.connectNow();
connection.onDispose()
.block();
}
}
You can find more about Netty
channel options at the following links:
4.5.2. Wire Logger
Reactor Netty provides wire logging for when the traffic between the peers has to be inspected.
By default, wire logging is disabled.
To enable it, you must set the logger reactor.netty.tcp.TcpClient
level to DEBUG
and apply the following configuration:
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;
public class Application {
public static void main(String[] args) {
Connection connection =
TcpClient.create()
.wiretap(true) (1)
.host("example.com")
.port(80)
.connectNow();
connection.onDispose()
.block();
}
}
1 | Enables the wire logging |
4.5.3. Event Loop Group
By default the TCP
client uses an “Event Loop Group”, where the number of the worker threads equals the number of
processors available to the runtime on initialization (but with a minimum value of 4). When you need a different configuration,
you can use one of the LoopResource#create
methods.
The following listing shows the default configuration for the Event Loop Group:
* Default worker thread count, fallback to available processor
* (but with a minimum value of 4)
*/
public static final String IO_WORKER_COUNT = "reactor.netty.ioWorkerCount";
/**
* Default selector thread count, fallback to -1 (no selector thread)
*/
public static final String IO_SELECT_COUNT = "reactor.netty.ioSelectCount";
/**
* Default worker thread count for UDP, fallback to available processor
* (but with a minimum value of 4)
*/
public static final String UDP_IO_THREAD_COUNT = "reactor.netty.udp.ioThreadCount";
/**
* Default quiet period that guarantees that the disposal of the underlying LoopResources
* will not happen, fallback to 2 seconds.
*/
public static final String SHUTDOWN_QUIET_PERIOD = "reactor.netty.ioShutdownQuietPeriod";
/**
* Default maximum amount of time to wait until the disposal of the underlying LoopResources
* regardless if a task was submitted during the quiet period, fallback to 15 seconds.
*/
public static final String SHUTDOWN_TIMEOUT = "reactor.netty.ioShutdownTimeout";
/**
* Default value whether the native transport (epoll, kqueue) will be preferred,
* fallback it will be preferred when available
*/
public static final String NATIVE = "reactor.netty.native";
If you need changes to the these settings, you can apply the following configuration:
import reactor.netty.Connection;
import reactor.netty.resources.LoopResources;
import reactor.netty.tcp.TcpClient;
public class Application {
public static void main(String[] args) {
LoopResources loop = LoopResources.create("event-loop", 1, 4, true);
Connection connection =
TcpClient.create()
.host("example.com")
.port(80)
.runOn(loop)
.connectNow();
connection.onDispose()
.block();
}
}
4.6. Connection Pool
By default, the TCP
client uses a “fixed” connection pool with 500
as the maximum number of channels
and 1000
as the maximum number of the registered requests for acquire to keep in the pending queue
(for the rest of the configurations check the system properties below).
This means that the implementation creates a new channel if someone tries to acquire a channel but none is in the pool.
When the maximum number of the channels in the pool is reached, new tries to acquire a channel are delayed
until a channel is returned to the pool again.
/**
* Default acquisition timeout (milliseconds) before error. If -1 will never wait to
* acquire before opening a new
* connection in an unbounded fashion. Fallback 45 seconds
*/
public static final String POOL_ACQUIRE_TIMEOUT = "reactor.netty.pool.acquireTimeout";
/**
* Default max idle time, fallback - max idle time is not specified.
*/
public static final String POOL_MAX_IDLE_TIME = "reactor.netty.pool.maxIdleTime";
/**
* Default max life time, fallback - max life time is not specified.
*/
public static final String POOL_MAX_LIFE_TIME = "reactor.netty.pool.maxLifeTime";
/**
* Default leasing strategy (fifo, lifo), fallback to fifo.
* <ul>
* <li>fifo - The connection selection is first in, first out</li>
* <li>lifo - The connection selection is last in, first out</li>
* </ul>
*/
public static final String POOL_LEASING_STRATEGY = "reactor.netty.pool.leasingStrategy";
If you need to disable the connection pool, you can apply the following configuration:
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;
public class Application {
public static void main(String[] args) {
Connection connection =
TcpClient.newConnection()
.host("example.com")
.port(80)
.connectNow();
connection.onDispose()
.block();
}
}
If you need to specify an idle time for the channels in the connection pool, you can apply the following configuration:
import reactor.netty.Connection;
import reactor.netty.resources.ConnectionProvider;
import reactor.netty.tcp.TcpClient;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
ConnectionProvider provider =
ConnectionProvider.builder("fixed")
.maxConnections(50)
.pendingAcquireTimeout(Duration.ofMillis(30000))
.maxIdleTime(Duration.ofMillis(60))
.build();
Connection connection =
TcpClient.create(provider)
.host("example.com")
.port(80)
.connectNow();
connection.onDispose()
.block();
}
}
When you expect a high load, be cautious with a connection pool with a very high value for maximum connections. You might experience
reactor.netty.http.client.PrematureCloseException exception with a root cause "Connect Timeout" due
to too many concurrent connections opened/acquired.
|
4.6.1. Metrics
The pooled ConnectionProvider
supports built-in integration with Micrometer
.
It exposes all metrics with a prefix of reactor.netty.connection.provider
.
Pooled ConnectionProvider
metrics
metric name | type | description |
---|---|---|
reactor.netty.connection.provider.total.connections |
Gauge |
The number of all connections, active or idle |
reactor.netty.connection.provider.active.connections |
Gauge |
The number of the connections that have been successfully acquired and are in active use |
reactor.netty.connection.provider.idle.connections |
Gauge |
The number of the idle connections |
reactor.netty.connection.provider.pending.connections |
Gauge |
The number of requests that are waiting for a connection |
The following example enables that integration:
import reactor.netty.Connection;
import reactor.netty.resources.ConnectionProvider;
import reactor.netty.tcp.TcpClient;
public class Application {
public static void main(String[] args) {
ConnectionProvider provider =
ConnectionProvider.builder("fixed")
.maxConnections(50)
.metrics(true) (1)
.build();
Connection connection =
TcpClient.create(provider)
.host("example.com")
.port(80)
.connectNow();
connection.onDispose()
.block();
}
}
1 | Enables the built-in integration with Micrometer |
4.7. SSL and TLS
When you need SSL or TLS, you can apply the following configuration.
By default, if OpenSSL
is available, the
SslProvider.OPENSSL
provider is used as a provider. Otherwise, the provider is
SslProvider.JDK
.
You can switch the provider by using
SslContextBuilder
or by setting -Dio.netty.handler.ssl.noOpenSsl=true
.
The following example uses SslContextBuilder
:
import io.netty.handler.ssl.SslContextBuilder;
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;
public class Application {
public static void main(String[] args) {
SslContextBuilder sslContextBuilder = SslContextBuilder.forClient();
Connection connection =
TcpClient.create()
.host("example.com")
.port(443)
.secure(spec -> spec.sslContext(sslContextBuilder))
.connectNow();
connection.onDispose()
.block();
}
}
4.7.1. Server Name Indication
By default, the TCP
client sends the remote host name as SNI
server name.
When you need to change this default setting, you can configure the TCP
client as follows:
import io.netty.handler.ssl.SslContext;
import io.netty.handler.ssl.SslContextBuilder;
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;
import javax.net.ssl.SNIHostName;
public class Application {
public static void main(String[] args) throws Exception {
SslContext sslContext = SslContextBuilder.forClient().build();
Connection connection =
TcpClient.create()
.host("127.0.0.1")
.port(8080)
.secure(spec -> spec.sslContext(sslContext)
.serverNames(new SNIHostName("test.com")))
.connectNow();
connection.onDispose()
.block();
}
}
4.8. Proxy Support
The TCP client supports the proxy functionality provided by Netty and provides a way
to specify “non proxy hosts” through the ProxyProvider
builder.
The following example uses ProxyProvider
:
import reactor.netty.Connection;
import reactor.netty.transport.ProxyProvider;
import reactor.netty.tcp.TcpClient;
public class Application {
public static void main(String[] args) {
Connection connection =
TcpClient.create()
.host("example.com")
.port(80)
.proxy(spec -> spec.type(ProxyProvider.Proxy.SOCKS4)
.host("proxy")
.port(8080)
.nonProxyHosts("localhost"))
.connectNow();
connection.onDispose()
.block();
}
}
4.9. Metrics
The TCP client supports built-in integration with Micrometer
.
It exposes all metrics with a prefix of reactor.netty.tcp.client
.
The following table provides information for the TCP client metrics:
metric name | type | description |
---|---|---|
reactor.netty.tcp.client.data.received |
DistributionSummary |
Amount of the data received, in bytes |
reactor.netty.tcp.client.data.sent |
DistributionSummary |
Amount of the data sent, in bytes |
reactor.netty.tcp.client.errors |
Counter |
Number of errors that occurred |
reactor.netty.tcp.client.tls.handshake.time |
Timer |
Time spent for TLS handshake |
reactor.netty.tcp.client.connect.time |
Timer |
Time spent for connecting to the remote address |
reactor.netty.tcp.client.address.resolver |
Timer |
Time spent for resolving the address |
These additional metrics are also available:
Pooled ConnectionProvider
metrics
metric name | type | description |
---|---|---|
reactor.netty.connection.provider.total.connections |
Gauge |
The number of all connections, active or idle |
reactor.netty.connection.provider.active.connections |
Gauge |
The number of the connections that have been successfully acquired and are in active use |
reactor.netty.connection.provider.idle.connections |
Gauge |
The number of the idle connections |
reactor.netty.connection.provider.pending.connections |
Gauge |
The number of requests that are waiting for a connection |
ByteBufAllocator
metrics
metric name | type | description |
---|---|---|
reactor.netty.bytebuf.allocator.used.heap.memory |
Gauge |
The number of the bytes of the heap memory |
reactor.netty.bytebuf.allocator.used.direct.memory |
Gauge |
The number of the bytes of the direct memory |
reactor.netty.bytebuf.allocator.used.heap.arenas |
Gauge |
The number of heap arenas (when |
reactor.netty.bytebuf.allocator.used.direct.arenas |
Gauge |
The number of direct arenas (when |
reactor.netty.bytebuf.allocator.used.threadlocal.caches |
Gauge |
The number of thread local caches (when |
reactor.netty.bytebuf.allocator.used.tiny.cache.size |
Gauge |
The size of the tiny cache (when |
reactor.netty.bytebuf.allocator.used.small.cache.size |
Gauge |
The size of the small cache (when |
reactor.netty.bytebuf.allocator.used.normal.cache.size |
Gauge |
The size of the normal cache (when |
reactor.netty.bytebuf.allocator.used.chunk.size |
Gauge |
The chunk size for an arena (when |
The following example enables that integration:
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;
public class Application {
public static void main(String[] args) {
Connection connection =
TcpClient.create()
.host("example.com")
.port(80)
.metrics(true) (1)
.connectNow();
connection.onDispose()
.block();
}
}
1 | Enables the built-in integration with Micrometer |
When TCP client metrics are needed for an integration with a system other than Micrometer
or you want
to provide your own integration with Micrometer
, you can provide your own metrics recorder, as follows:
import reactor.netty.Connection;
import reactor.netty.channel.ChannelMetricsRecorder;
import reactor.netty.tcp.TcpClient;
import java.net.SocketAddress;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
Connection connection =
TcpClient.create()
.host("example.com")
.port(80)
.metrics(true, CustomChannelMetricsRecorder::new) (1)
.connectNow();
connection.onDispose()
.block();
}
1 | Enables TCP client metrics and provides ChannelMetricsRecorder implementation. |
4.10. Unix Domain Sockets
The TCP
client supports Unix Domain Sockets (UDS) when native transport is in use.
The following example shows how to use UDS support:
import io.netty.channel.unix.DomainSocketAddress;
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;
public class Application {
public static void main(String[] args) {
Connection connection =
TcpClient.create()
.remoteAddress(() -> new DomainSocketAddress("/tmp/test.sock")) (1)
.connectNow();
connection.onDispose()
.block();
}
}
1 | Specifies DomainSocketAddress that will be used |
Suggest Edit to "TCP Client"
5. HTTP Server
Reactor Netty
provides the easy-to-use and easy-to-configure
HttpServer
class.
It hides most of the Netty
functionality that is needed in order to create a HTTP
server
and adds Reactive Streams
backpressure.
5.1. Starting and Stopping
To start an HTTP server, you must create and configure a
HttpServer instance.
By default, the host
is configured for any local address, and the system picks up an ephemeral port
when the bind
operation is invoked.
The following example shows how to create an HttpServer
instance:
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
public class Application {
public static void main(String[] args) {
DisposableServer server =
HttpServer.create() (1)
.bindNow(); (2)
server.onDispose()
.block();
}
}
1 | Creates an HttpServer instance ready for configuring. |
2 | Starts the server in a blocking fashion and waits for it to finish initializing. |
The returned DisposableServer
offers a simple server API, including disposeNow()
,
which shuts the server down in a blocking fashion.
5.1.1. Host and Port
To serve on a specific host
and port
, you can apply the following configuration to the HTTP
server:
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
public class Application {
public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.host("localhost") (1)
.port(8080) (2)
.bindNow();
server.onDispose()
.block();
}
}
1 | Configures the HTTP server host |
2 | Configures the HTTP server port |
5.2. Routing HTTP
Defining routes for the HTTP
server requires configuring the provided
HttpServerRoutes
builder.
The following example shows how to do so:
import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
public class Application {
public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.route(routes ->
routes.get("/hello", (1)
(request, response) -> response.sendString(Mono.just("Hello World!")))
.post("/echo", (2)
(request, response) -> response.send(request.receive().retain()))
.get("/path/{param}", (3)
(request, response) -> response.sendString(Mono.just(request.param("param"))))
.ws("/ws", (4)
(wsInbound, wsOutbound) -> wsOutbound.send(wsInbound.receive().retain())))
.bindNow();
server.onDispose()
.block();
}
}
1 | Serves a GET request to /hello and returns Hello World! |
2 | Serves a POST request to /echo and returns the received request body as a response. |
3 | Serves a GET request to /path/{param} and returns the value of the path parameter. |
4 | Serves websocket to /ws and returns the received incoming data as outgoing data. |
The server routes are unique and only the first matching in order of declaration is invoked. |
5.2.1. SSE
The following code shows how you can configure the HTTP
server to serve Server-Sent Events
:
import com.fasterxml.jackson.databind.ObjectMapper;
import io.netty.buffer.ByteBuf;
import io.netty.buffer.ByteBufAllocator;
import org.reactivestreams.Publisher;
import reactor.core.publisher.Flux;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
import reactor.netty.http.server.HttpServerRequest;
import reactor.netty.http.server.HttpServerResponse;
import java.io.ByteArrayOutputStream;
import java.nio.charset.Charset;
import java.time.Duration;
import java.util.function.BiFunction;
public class Application {
public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.route(routes -> routes.get("/sse", serveSse()))
.bindNow();
server.onDispose()
.block();
}
/**
* Prepares SSE response
* The "Content-Type" is "text/event-stream"
* The flushing strategy is "flush after every element" emitted by the provided Publisher
*/
private static BiFunction<HttpServerRequest, HttpServerResponse, Publisher<Void>> serveSse() {
Flux<Long> flux = Flux.interval(Duration.ofSeconds(10));
return (request, response) ->
response.sse()
.send(flux.map(Application::toByteBuf), b -> true);
}
/**
* Transforms the Object to ByteBuf following the expected SSE format.
*/
private static ByteBuf toByteBuf(Object any) {
ByteArrayOutputStream out = new ByteArrayOutputStream();
try {
out.write("data: ".getBytes(Charset.defaultCharset()));
MAPPER.writeValue(out, any);
out.write("\n\n".getBytes(Charset.defaultCharset()));
}
catch (Exception e) {
throw new RuntimeException(e);
}
return ByteBufAllocator.DEFAULT
.buffer()
.writeBytes(out.toByteArray());
}
private static final ObjectMapper MAPPER = new ObjectMapper();
}
5.2.2. Static Resources
The following code shows how you can configure the HTTP
server to serve static resources:
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
import java.net.URISyntaxException;
import java.nio.file.Path;
import java.nio.file.Paths;
public class Application {
public static void main(String[] args) throws URISyntaxException {
Path file = Paths.get(Application.class.getResource("/logback.xml").toURI());
DisposableServer server =
HttpServer.create()
.route(routes -> routes.file("/index.html", file))
.bindNow();
server.onDispose()
.block();
}
}
5.3. Writing Data
To send data to a connected client, you must attach an I/O handler by using either
handle(…)
or
route(…)
.
The I/O handler has access to HttpServerResponse
,
to be able to write data. The following example uses the handle(…)
method:
import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
public class Application {
public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.handle((request, response) -> response.sendString(Mono.just("hello"))) (1)
.bindNow();
server.onDispose()
.block();
}
}
1 | Sends hello string to the connected clients |
5.3.1. Adding Headers and Other Metadata
When you send data to the connected clients, you may need to send additional headers,
cookies, status code, and other metadata.
You can provide this additional metadata by using
HttpServerResponse
.
The following example shows how to do so:
import io.netty.handler.codec.http.HttpHeaderNames;
import io.netty.handler.codec.http.HttpResponseStatus;
import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
public class Application {
public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.route(routes ->
routes.get("/hello",
(request, response) ->
response.status(HttpResponseStatus.OK)
.header(HttpHeaderNames.CONTENT_LENGTH, "12")
.sendString(Mono.just("Hello World!"))))
.bindNow();
server.onDispose()
.block();
}
}
5.3.2. Compression
You can configure the HTTP
server to send a compressed response, depending on the request header
Accept-Encoding
.
Reactor Netty
provides three different strategies for compressing the outgoing data:
-
compress(boolean)
: Depending on the boolean that is provided, the compression is enabled (true
) or disabled (false
). -
compress(int)
: The compression is performed once the response size exceeds the given value (in bytes). -
compress(BiPredicate<HttpServerRequest, HttpServerResponse>)
: The compression is performed if the predicate returnstrue
.
The following example uses the compress
method (set to true
) to enable compression:
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
import java.net.URISyntaxException;
import java.nio.file.Path;
import java.nio.file.Paths;
public class Application {
public static void main(String[] args) throws URISyntaxException {
Path file = Paths.get(Application.class.getResource("/logback.xml").toURI());
DisposableServer server =
HttpServer.create()
.compress(true)
.route(routes -> routes.file("/index.html", file))
.bindNow();
server.onDispose()
.block();
}
}
5.4. Consuming Data
To receive data from a connected client, you must attach an I/O handler by using either
handle(…)
or
route(…)
.
The I/O handler has access to HttpServerRequest
,
to be able to read data.
The following example uses the handle(…)
method:
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
public class Application {
public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.handle((request, response) -> request.receive().then()) (1)
.bindNow();
server.onDispose()
.block();
}
}
1 | Receives data from the connected clients |
5.4.1. Reading Headers, URI Params, and other Metadata
When you receive data from the connected clients, you might need to check request headers,
parameters, and other metadata. You can obtain this additional metadata by using
HttpServerRequest
.
The following example shows how to do so:
import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
public class Application {
public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.route(routes ->
routes.get("/{param}",
(request, response) -> {
if (request.requestHeaders().contains("Some-Header")) {
return response.sendString(Mono.just(request.param("param")));
}
return response.sendNotFound();
}))
.bindNow();
server.onDispose()
.block();
}
}
Obtaining the Remote (Client) Address
In addition to the metadata that you can obtain from the request, you can also receive the
host (server)
address, the remote (client)
address and the scheme
. Depending on the
chosen factory method, you can retrieve the information directly from the channel or by
using the Forwarded
or X-Forwarded-*
HTTP
request headers.
The following example shows how to do so:
import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
public class Application {
public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.forwarded(true) (1)
.route(routes ->
routes.get("/clientip",
(request, response) ->
response.sendString(Mono.just(request.remoteAddress() (2)
.getHostString()))))
.bindNow();
server.onDispose()
.block();
}
}
1 | Specifies that the information about the connection is to be obtained from the Forwarded and X-Forwarded-*
HTTP request headers, if possible. |
2 | Returns the address of the remote (client) peer. |
It is also possible to customize the behavior of the Forwarded
or X-Forwarded-*
header handler.
The following example shows how to do so:
import java.net.InetSocketAddress;
import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
import reactor.netty.transport.AddressUtils;
public class CustomForwardedHeaderHandlerApplication {
public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.forwarded((connectionInfo, request) -> { (1)
String hostHeader = request.headers().get("X-Forwarded-Host");
if (hostHeader != null) {
String[] hosts = hostHeader.split(",", 2);
InetSocketAddress hostAddress = AddressUtils.createUnresolved(
hosts[hosts.length - 1].trim(),
connectionInfo.getHostAddress().getPort());
connectionInfo = connectionInfo.withHostAddress(hostAddress);
}
return connectionInfo;
})
.route(routes ->
routes.get("/clientip",
(request, response) ->
response.sendString(Mono.just(request.remoteAddress() (2)
.getHostString()))))
.bindNow();
server.onDispose()
.block();
}
}
1 | Add a custom header handler. |
2 | Returns the address of the remote (client) peer. |
5.4.2. HTTP Request Decoder
By default, Netty
configures some restrictions for the incoming requests, such as:
-
The maximum length of the initial line.
-
The maximum length of all headers.
-
The maximum length of the content or each chunk.
For more information, see HttpRequestDecoder
and HttpServerUpgradeHandler
By default, the HTTP
server is configured with the following settings:
public static final int DEFAULT_MAX_INITIAL_LINE_LENGTH = 4096;
public static final int DEFAULT_MAX_HEADER_SIZE = 8192;
public static final int DEFAULT_MAX_CHUNK_SIZE = 8192;
public static final boolean DEFAULT_VALIDATE_HEADERS = true;
public static final int DEFAULT_INITIAL_BUFFER_SIZE = 128;
public static final int DEFAULT_H2C_MAX_CONTENT_LENGTH = 0;
When you need to change these default settings, you can configure the HTTP
server as follows:
import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
public class Application {
public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.httpRequestDecoder(spec -> spec.maxHeaderSize(16384)) (1)
.handle((request, response) -> response.sendString(Mono.just("hello")))
.bindNow();
server.onDispose()
.block();
}
}
1 | The maximum length of all headers will be 16384 .
When this value is exceeded, a
TooLongFrameException
is raised. |
5.5. TCP-level Configuration
When you need to change configuration on the TCP level, you can use the following snippet
to extend the default TCP
server configuration:
import io.netty.channel.ChannelOption;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
public class Application {
public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 10000)
.bindNow();
server.onDispose()
.block();
}
}
See TCP Server for more detail about TCP-level configuration.
5.5.1. Wire Logger
Reactor Netty
provides wire logging for when you need to inspect the traffic between the peers.
By default, wire logging is disabled.
To enable it, you must set the logger reactor.netty.http.server.HttpServer
level to DEBUG
and apply the following configuration:
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
public class Application {
public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.wiretap(true) (1)
.bindNow();
server.onDispose()
.block();
}
}
1 | Enables the wire logging |
5.6. SSL and TLS
When you need SSL or TLS, you can apply the configuration shown in the next example.
By default, if OpenSSL
is available,
SslProvider.OPENSSL
provider is used as a provider. Otherwise
SslProvider.JDK
is used.
You can switch the provider by using
SslContextBuilder
or by setting -Dio.netty.handler.ssl.noOpenSsl=true
.
The following example uses SslContextBuilder
:
import io.netty.handler.ssl.SslContextBuilder;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
import java.io.File;
public class Application {
public static void main(String[] args) {
File cert = new File("certificate.crt");
File key = new File("private.key");
SslContextBuilder sslContextBuilder = SslContextBuilder.forServer(cert, key);
DisposableServer server =
HttpServer.create()
.secure(spec -> spec.sslContext(sslContextBuilder))
.bindNow();
server.onDispose()
.block();
}
}
5.6.1. Server Name Indication
You can configure the HTTP
server with multiple SslContext
mapped to a specific domain.
An exact domain name or a domain name containing a wildcard can be used when configuring the SNI
mapping.
The following example uses a domain name containing a wildcard:
import io.netty.handler.ssl.SslContext;
import io.netty.handler.ssl.SslContextBuilder;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
import java.io.File;
public class Application {
public static void main(String[] args) throws Exception {
File defaultCert = new File("default_certificate.crt");
File defaultKey = new File("default_private.key");
File testDomainCert = new File("default_certificate.crt");
File testDomainKey = new File("default_private.key");
SslContext defaultSslContext = SslContextBuilder.forServer(defaultCert, defaultKey).build();
SslContext testDomainSslContext = SslContextBuilder.forServer(testDomainCert, testDomainKey).build();
DisposableServer server =
HttpServer.create()
.secure(spec -> spec.sslContext(defaultSslContext)
.addSniMapping("*.test.com",
testDomainSpec -> testDomainSpec.sslContext(testDomainSslContext)))
.bindNow();
server.onDispose()
.block();
}
}
5.7. HTTP Access Log
The current logging support provides only the Common Log Format.
You can use -Dreactor.netty.http.server.accessLogEnabled=true
to enable the HTTP
access log.
By default, it is disabled.
You can use the following configuration (for Logback or similar logging frameworks) to have a separate
HTTP
access log file:
<appender name="accessLog" class="ch.qos.logback.core.FileAppender">
<file>access_log.log</file>
<encoder>
<pattern>%msg%n</pattern>
</encoder>
</appender>
<appender name="async" class="ch.qos.logback.classic.AsyncAppender">
<appender-ref ref="accessLog" />
</appender>
<logger name="reactor.netty.http.server.AccessLog" level="INFO" additivity="false">
<appender-ref ref="async"/>
</logger>
5.8. HTTP/2
By default, the HTTP
server supports HTTP/1.1
. If you need HTTP/2
, you can get it through configuration.
In addition to the protocol configuration, if you need H2
but not H2C (cleartext)
, you must also configure SSL.
As Application-Layer Protocol Negotiation (ALPN) is not supported “out-of-the-box” by JDK8 (although some vendors backported ALPN to JDK8), you need an additional dependency to a native library that
supports it — for example, netty-tcnative-boringssl-static .
|
The following listing presents a simple H2
example:
import io.netty.handler.ssl.SslContextBuilder;
import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.HttpProtocol;
import reactor.netty.http.server.HttpServer;
import java.io.File;
public class H2Application {
public static void main(String[] args) {
File cert = new File("certificate.crt");
File key = new File("private.key");
SslContextBuilder sslContextBuilder = SslContextBuilder.forServer(cert, key);
DisposableServer server =
HttpServer.create()
.port(8080)
.protocol(HttpProtocol.H2) (1)
.secure(spec -> spec.sslContext(sslContextBuilder)) (2)
.handle((request, response) -> response.sendString(Mono.just("hello")))
.bindNow();
server.onDispose()
.block();
}
}
1 | Configures the server to support only HTTP/2 |
2 | Configures SSL |
The application should now behave as follows:
$ curl --http2 https://localhost:8080 -i
HTTP/2 200
hello
The following listing presents a simple H2C
example:
import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.HttpProtocol;
import reactor.netty.http.server.HttpServer;
public class H2CApplication {
public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.port(8080)
.protocol(HttpProtocol.H2C)
.handle((request, response) -> response.sendString(Mono.just("hello")))
.bindNow();
server.onDispose()
.block();
}
}
The application should now behave as follows:
$ curl --http2-prior-knowledge http://localhost:8080 -i
HTTP/2 200
hello
5.8.1. Protocol Selection
public enum HttpProtocol {
/**
* The default supported HTTP protocol by HttpServer and HttpClient
*/
HTTP11,
/**
* HTTP/2.0 support with TLS
* <p>If used along with HTTP/1.1 protocol, HTTP/2.0 will be the preferred protocol.
* While negotiating the application level protocol, HTTP/2.0 or HTTP/1.1 can be chosen.
* <p>If used without HTTP/1.1 protocol, HTTP/2.0 will always be offered as a protocol
* for communication with no fallback to HTTP/1.1.
*/
H2,
/**
* HTTP/2.0 support with clear-text.
* <p>If used along with HTTP/1.1 protocol, will support H2C "upgrade":
* Request or consume requests as HTTP/1.1 first, looking for HTTP/2.0 headers
* and {@literal Connection: Upgrade}. A server will typically reply a successful
* 101 status if upgrade is successful or a fallback HTTP/1.1 response. When
* successful the client will start sending HTTP/2.0 traffic.
* <p>If used without HTTP/1.1 protocol, will support H2C "prior-knowledge": Doesn't
* require {@literal Connection: Upgrade} handshake between a client and server but
* fallback to HTTP/1.1 will not be supported.
*/
H2C
}
5.9. Metrics
The HTTP server supports built-in integration with Micrometer
.
It exposes all metrics with a prefix of reactor.netty.http.server
.
The following table provides information for the HTTP server metrics:
metric name | type | description |
---|---|---|
reactor.netty.http.server.data.received |
DistributionSummary |
Amount of the data received, in bytes |
reactor.netty.http.server.data.sent |
DistributionSummary |
Amount of the data sent, in bytes |
reactor.netty.http.server.errors |
Counter |
Number of errors that occurred |
reactor.netty.http.server.data.received.time |
Timer |
Time spent in consuming incoming data |
reactor.netty.http.server.data.sent.time |
Timer |
Time spent in sending outgoing data |
reactor.netty.http.server.response.time |
Timer |
Total time for the request/response |
These additional metrics are also available:
ByteBufAllocator
metrics
metric name | type | description |
---|---|---|
reactor.netty.bytebuf.allocator.used.heap.memory |
Gauge |
The number of the bytes of the heap memory |
reactor.netty.bytebuf.allocator.used.direct.memory |
Gauge |
The number of the bytes of the direct memory |
reactor.netty.bytebuf.allocator.used.heap.arenas |
Gauge |
The number of heap arenas (when |
reactor.netty.bytebuf.allocator.used.direct.arenas |
Gauge |
The number of direct arenas (when |
reactor.netty.bytebuf.allocator.used.threadlocal.caches |
Gauge |
The number of thread local caches (when |
reactor.netty.bytebuf.allocator.used.tiny.cache.size |
Gauge |
The size of the tiny cache (when |
reactor.netty.bytebuf.allocator.used.small.cache.size |
Gauge |
The size of the small cache (when |
reactor.netty.bytebuf.allocator.used.normal.cache.size |
Gauge |
The size of the normal cache (when |
reactor.netty.bytebuf.allocator.used.chunk.size |
Gauge |
The chunk size for an arena (when |
The following example enables that integration:
import io.micrometer.core.instrument.Metrics;
import io.micrometer.core.instrument.config.MeterFilter;
import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
public class Application {
public static void main(String[] args) {
Metrics.globalRegistry (1)
.config()
.meterFilter(MeterFilter.maximumAllowableTags("reactor.netty.http.server", "URI", 100, MeterFilter.deny()));
DisposableServer server =
HttpServer.create()
.metrics(true, s -> {
if (s.startsWith("/stream/")) { (2)
return "/stream/{n}";
}
else if (s.startsWith("/bytes/")) {
return "/bytes/{n}";
}
return s;
}) (3)
.route(r ->
r.get("/stream/{n}",
(req, res) -> res.sendString(Mono.just(req.param("n"))))
.get("/bytes/{n}",
(req, res) -> res.sendString(Mono.just(req.param("n")))))
.bindNow();
server.onDispose()
.block();
}
}
1 | Applies upper limit for the meters with URI tag |
2 | Templated URIs will be used as an URI tag value when possible |
3 | Enables the built-in integration with Micrometer |
In order to avoid a memory and CPU overhead of the enabled metrics, it is important to convert the real URIs to templated URIs when possible. Without a conversion to a template-like form, each distinct URI leads to the creation of a distinct tag, which takes a lot of memory for the metrics. |
Always apply an upper limit for the meters with URI tags. Configuring an upper limit on the number of meters can help in cases when the real URIs cannot be templated.
You can find more information at maximumAllowableTags .
|
When HTTP server metrics are needed for an integration with a system other than Micrometer
or you want
to provide your own integration with Micrometer
, you can provide your own metrics recorder, as follows:
import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.channel.ChannelMetricsRecorder;
import reactor.netty.http.server.HttpServer;
import java.net.SocketAddress;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.metrics(true, CustomHttpServerMetricsRecorder::new) (1)
.route(r ->
r.get("/stream/{n}",
(req, res) -> res.sendString(Mono.just(req.param("n"))))
.get("/bytes/{n}",
(req, res) -> res.sendString(Mono.just(req.param("n")))))
.bindNow();
server.onDispose()
.block();
}
1 | Enables HTTP server metrics and provides HttpServerMetricsRecorder implementation. |
5.10. Unix Domain Sockets
The HTTP
server supports Unix Domain Sockets (UDS) when native transport is in use.
The following example shows how to use UDS support:
import io.netty.channel.unix.DomainSocketAddress;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
public class Application {
public static void main(String[] args) {
DisposableServer server =
HttpServer.create()
.bindAddress(() -> new DomainSocketAddress("/tmp/test.sock")) (1)
.bindNow();
server.onDispose()
.block();
}
}
1 | Specifies DomainSocketAddress that will be used |
Suggest Edit to "HTTP Server"
6. HTTP Client
Reactor Netty provides the easy-to-use and easy-to-configure
HttpClient
.
It hides most of the Netty functionality that is required to create a HTTP
client
and adds Reactive Streams backpressure.
6.1. Connect
To connect the HTTP
client to a given HTTP
endpoint, you must create and configure a
HttpClient
instance.
The following example shows how to do so:
import reactor.netty.http.client.HttpClient;
import reactor.netty.http.client.HttpClientResponse;
public class Application {
public static void main(String[] args) {
HttpClient client = HttpClient.create(); (1)
client.get() (2)
.uri("http://example.com/") (3)
.response() (4)
.block();
}
}
1 | Creates a HttpClient instance ready for configuring. |
2 | Specifies that GET method will be used. |
3 | Specifies the path. |
4 | Obtains the response HttpClientResponse |
The following example uses WebSocket
:
import io.netty.buffer.Unpooled;
import io.netty.util.CharsetUtil;
import reactor.core.publisher.Flux;
import reactor.netty.http.client.HttpClient;
public class Application {
public static void main(String[] args) {
HttpClient client = HttpClient.create();
client.websocket()
.uri("wss://echo.websocket.org")
.handle((inbound, outbound) -> {
inbound.receive()
.asString()
.take(1)
.subscribe(System.out::println);
final byte[] msgBytes = "hello".getBytes(CharsetUtil.ISO_8859_1);
return outbound.send(Flux.just(Unpooled.wrappedBuffer(msgBytes), Unpooled.wrappedBuffer(msgBytes)))
.neverComplete();
})
.blockLast();
}
}
6.1.1. Host and Port
In order to connect to a specific host and port, you can apply the following configuration to the HTTP
client:
import reactor.netty.http.client.HttpClient;
import reactor.netty.http.client.HttpClientResponse;
public class Application {
public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.host("example.com") (1)
.port(80); (2)
client.get()
.uri("/")
.response()
.block();
}
}
1 | Configures the HTTP host |
2 | Configures the HTTP port |
6.2. Writing Data
To send data to a given HTTP
endpoint, you can provide a Publisher
by using the
send(Publisher)
method.
By default, Transfer-Encoding: chunked
is applied for those HTTP
methods for which
a request body is expected. Content-Length
provided through request headers disables Transfer-Encoding: chunked
,
if necessary. The following example sends hello
:
import reactor.core.publisher.Mono;
import reactor.netty.ByteBufFlux;
import reactor.netty.http.client.HttpClient;
import reactor.netty.http.client.HttpClientResponse;
public class Application {
public static void main(String[] args) {
HttpClient client = HttpClient.create();
client.post()
.uri("http://example.com/")
.send(ByteBufFlux.fromString(Mono.just("hello"))) (1)
.response()
.block();
}
}
1 | Sends a hello string to the given HTTP endpoint |
6.2.1. Adding Headers and Other Metadata
When sending data to a given HTTP
endpoint, you may need to send additional headers, cookies and other metadata.
You can use the following configuration to do so:
import io.netty.handler.codec.http.HttpHeaderNames;
import reactor.core.publisher.Mono;
import reactor.netty.ByteBufFlux;
import reactor.netty.http.client.HttpClient;
import reactor.netty.http.client.HttpClientResponse;
public class Application {
public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.headers(h -> h.set(HttpHeaderNames.CONTENT_LENGTH, 5)); (1)
client.post()
.uri("http://example.com/")
.send(ByteBufFlux.fromString(Mono.just("hello")))
.response()
.block();
}
}
1 | Disables Transfer-Encoding: chunked and provides Content-Length header. |
Compression
You can enable compression on the HTTP
client, which means the request header
Accept-Encoding
is added to the request headers. The following example shows how to do so:
import reactor.netty.http.client.HttpClient;
import reactor.netty.http.client.HttpClientResponse;
public class Application {
public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.compress(true);
client.get()
.uri("http://example.com/")
.response()
.block();
}
}
Auto-Redirect Support
You can configure the HTTP
client to enable auto-redirect support.
Reactor Netty provides two different strategies for auto-redirect support:
-
followRedirect(boolean)
: Specifies whether HTTP auto-redirect support is enabled for statuses301|302|307|308
. -
followRedirect(BiPredicate<HttpClientRequest, HttpClientResponse>)
: Enables auto-redirect support if the supplied predicate matches.
The following example uses followRedirect(true)
:
import reactor.netty.http.client.HttpClient;
import reactor.netty.http.client.HttpClientResponse;
public class Application {
public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.followRedirect(true);
client.get()
.uri("http://example.com/")
.response()
.block();
}
}
6.3. Consuming Data
To receive data from a given HTTP
endpoint, you can use one of the methods from
HttpClient.ResponseReceiver
.
The following example uses the responseContent
method:
import reactor.netty.http.client.HttpClient;
public class Application {
public static void main(String[] args) {
HttpClient client = HttpClient.create();
client.get()
.uri("http://example.com/")
.responseContent() (1)
.aggregate() (2)
.asString() (3)
.block();
}
}
1 | Receives data from a given HTTP endpoint |
2 | Aggregates the data |
3 | Transforms the data as string |
6.3.1. Reading Headers and Other Metadata
When receiving data from a given HTTP
endpoint, you can check response headers, status code, and other metadata.
You can obtain this additional metadata by using
HttpClientResponse
.
The following example shows how to do so.
import reactor.netty.http.client.HttpClient;
public class Application {
public static void main(String[] args) {
HttpClient client = HttpClient.create();
client.get()
.uri("http://example.com/")
.responseSingle((resp, bytes) -> {
System.out.println(resp.status()); (1)
return bytes.asString();
})
.block();
}
}
1 | Obtains the status code. |
6.3.2. HTTP Response Decoder
By default, Netty
configures some restrictions for the incoming responses, such as:
-
The maximum length of the initial line.
-
The maximum length of all headers.
-
The maximum length of the content or each chunk.
For more information, see HttpResponseDecoder
By default, the HTTP
client is configured with the following settings:
public static final int DEFAULT_MAX_INITIAL_LINE_LENGTH = 4096;
public static final int DEFAULT_MAX_HEADER_SIZE = 8192;
public static final int DEFAULT_MAX_CHUNK_SIZE = 8192;
public static final boolean DEFAULT_VALIDATE_HEADERS = true;
public static final int DEFAULT_INITIAL_BUFFER_SIZE = 128;
public static final boolean DEFAULT_FAIL_ON_MISSING_RESPONSE = false;
public static final boolean DEFAULT_PARSE_HTTP_AFTER_CONNECT_REQUEST = false;
/**
* The maximum length of the content of the HTTP/2.0 clear-text upgrade request.
* By default the client will allow an upgrade request with up to 65536 as
* the maximum length of the aggregated content.
*/
public static final int DEFAULT_H2C_MAX_CONTENT_LENGTH = 65536;
When you need to change these default settings, you can configure the HTTP
client as follows:
import reactor.netty.http.client.HttpClient;
public class Application {
public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.httpResponseDecoder(spec -> spec.maxHeaderSize(16384)); (1)
client.get()
.uri("http://example.com/")
.responseContent()
.aggregate()
.asString()
.block();
}
}
1 | The maximum length of all headers will be 16384 .
When this value is exceeded, a
TooLongFrameException
is raised. |
6.4. TCP-level Configuration
When you need configurations on a TCP level, you can use the following snippet
to extend the default TCP
client configuration (add an option, bind address etc.):
import io.netty.channel.ChannelOption;
import reactor.netty.http.client.HttpClient;
import java.net.InetSocketAddress;
public class Application {
public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.bindAddress(() -> new InetSocketAddress("host", 1234))
.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 10000);
String response =
client.get()
.uri("http://example.com/")
.responseContent()
.aggregate()
.asString()
.block();
System.out.println("Response " + response);
}
}
See TCP Client for more about TCP
level configurations.
6.4.1. Wire Logger
Reactor Netty provides wire logging for when the traffic between the peers needs to be inspected.
By default, wire logging is disabled.
To enable it, you must set the logger reactor.netty.http.client.HttpClient
level to DEBUG
and apply the following configuration:
import reactor.netty.http.client.HttpClient;
import reactor.netty.http.client.HttpClientResponse;
public class Application {
public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.wiretap(true); (1)
client.get()
.uri("http://example.com/")
.response()
.block();
}
}
1 | Enables the wire logging |
6.5. SSL and TLS
When you need SSL or TLS, you can apply the configuration shown in the next example.
By default, if OpenSSL
is available, a
SslProvider.OPENSSL
provider is used as a provider. Otherwise a
SslProvider.JDK provider is used
You can switch the provider by using
SslContextBuilder
or by setting -Dio.netty.handler.ssl.noOpenSsl=true
.
The following example uses SslContextBuilder
:
import io.netty.handler.ssl.SslContextBuilder;
import reactor.netty.http.client.HttpClient;
import reactor.netty.http.client.HttpClientResponse;
public class Application {
public static void main(String[] args) {
SslContextBuilder sslContextBuilder = SslContextBuilder.forClient();
HttpClient client =
HttpClient.create()
.secure(spec -> spec.sslContext(sslContextBuilder));
client.get()
.uri("https://example.com/")
.response()
.block();
}
}
6.5.1. Server Name Indication
By default, the HTTP
client sends the remote host name as SNI
server name.
When you need to change this default setting, you can configure the HTTP
client as follows:
import io.netty.handler.ssl.SslContext;
import io.netty.handler.ssl.SslContextBuilder;
import reactor.netty.http.client.HttpClient;
import javax.net.ssl.SNIHostName;
public class Application {
public static void main(String[] args) throws Exception {
SslContext sslContext = SslContextBuilder.forClient().build();
HttpClient client =
HttpClient.create()
.secure(spec -> spec.sslContext(sslContext)
.serverNames(new SNIHostName("test.com")));
client.get()
.uri("https://127.0.0.1:8080/")
.response()
.block();
}
}
6.6. Retry Strategies
By default, the HTTP
client retries the request once if it was aborted on the TCP
level.
6.7. HTTP/2
By default, the HTTP
client supports HTTP/1.1
. If you need HTTP/2
, you can get it through configuration.
In addition to the protocol configuration, if you need H2
but not H2C (cleartext)
, you must also configure SSL.
As Application-Layer Protocol Negotiation (ALPN) is not supported “out-of-the-box” by JDK8 (although some vendors backported ALPN to JDK8), you need an additional dependency to a native library that
supports it — for example, netty-tcnative-boringssl-static .
|
The following listing presents a simple H2
example:
import io.netty.handler.codec.http.HttpHeaders;
import reactor.core.publisher.Mono;
import reactor.netty.http.HttpProtocol;
import reactor.netty.http.client.HttpClient;
import reactor.util.function.Tuple2;
public class H2Application {
public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.protocol(HttpProtocol.H2) (1)
.secure(); (2)
Tuple2<String, HttpHeaders> response =
client.get()
.uri("https://example.com/")
.responseSingle((res, bytes) -> bytes.asString()
.zipWith(Mono.just(res.responseHeaders())))
.block();
System.out.println("Used stream ID: " + response.getT2().get("x-http2-stream-id"));
System.out.println("Response: " + response.getT1());
}
}
1 | Configures the client to support only HTTP/2 |
2 | Configures SSL |
The following listing presents a simple H2C
example:
import io.netty.handler.codec.http.HttpHeaders;
import reactor.core.publisher.Mono;
import reactor.netty.http.HttpProtocol;
import reactor.netty.http.client.HttpClient;
import reactor.util.function.Tuple2;
public class H2CApplication {
public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.protocol(HttpProtocol.H2C);
Tuple2<String, HttpHeaders> response =
client.get()
.uri("http://localhost:8080/")
.responseSingle((res, bytes) -> bytes.asString()
.zipWith(Mono.just(res.responseHeaders())))
.block();
System.out.println("Used stream ID: " + response.getT2().get("x-http2-stream-id"));
System.out.println("Response: " + response.getT1());
}
}
6.7.1. Protocol Selection
public enum HttpProtocol {
/**
* The default supported HTTP protocol by HttpServer and HttpClient
*/
HTTP11,
/**
* HTTP/2.0 support with TLS
* <p>If used along with HTTP/1.1 protocol, HTTP/2.0 will be the preferred protocol.
* While negotiating the application level protocol, HTTP/2.0 or HTTP/1.1 can be chosen.
* <p>If used without HTTP/1.1 protocol, HTTP/2.0 will always be offered as a protocol
* for communication with no fallback to HTTP/1.1.
*/
H2,
/**
* HTTP/2.0 support with clear-text.
* <p>If used along with HTTP/1.1 protocol, will support H2C "upgrade":
* Request or consume requests as HTTP/1.1 first, looking for HTTP/2.0 headers
* and {@literal Connection: Upgrade}. A server will typically reply a successful
* 101 status if upgrade is successful or a fallback HTTP/1.1 response. When
* successful the client will start sending HTTP/2.0 traffic.
* <p>If used without HTTP/1.1 protocol, will support H2C "prior-knowledge": Doesn't
* require {@literal Connection: Upgrade} handshake between a client and server but
* fallback to HTTP/1.1 will not be supported.
*/
H2C
}
6.8. Metrics
The HTTP client supports built-in integration with Micrometer
.
It exposes all metrics with a prefix of reactor.netty.http.client
.
The following table provides information for the HTTP client metrics:
metric name | type | description |
---|---|---|
reactor.netty.http.client.data.received |
DistributionSummary |
Amount of the data received, in bytes |
reactor.netty.http.client.data.sent |
DistributionSummary |
Amount of the data sent, in bytes |
reactor.netty.http.client.errors |
Counter |
Number of errors that occurred |
reactor.netty.http.client.tls.handshake.time |
Timer |
Time spent for TLS handshake |
reactor.netty.http.client.connect.time |
Timer |
Time spent for connecting to the remote address |
reactor.netty.http.client.address.resolver |
Timer |
Time spent for resolving the address |
reactor.netty.http.client.data.received.time |
Timer |
Time spent in consuming incoming data |
reactor.netty.http.client.data.sent.time |
Timer |
Time spent in sending outgoing data |
reactor.netty.http.client.response.time |
Timer |
Total time for the request/response |
These additional metrics are also available:
Pooled ConnectionProvider
metrics
metric name | type | description |
---|---|---|
reactor.netty.connection.provider.total.connections |
Gauge |
The number of all connections, active or idle |
reactor.netty.connection.provider.active.connections |
Gauge |
The number of the connections that have been successfully acquired and are in active use |
reactor.netty.connection.provider.idle.connections |
Gauge |
The number of the idle connections |
reactor.netty.connection.provider.pending.connections |
Gauge |
The number of requests that are waiting for a connection |
ByteBufAllocator
metrics
metric name | type | description |
---|---|---|
reactor.netty.bytebuf.allocator.used.heap.memory |
Gauge |
The number of the bytes of the heap memory |
reactor.netty.bytebuf.allocator.used.direct.memory |
Gauge |
The number of the bytes of the direct memory |
reactor.netty.bytebuf.allocator.used.heap.arenas |
Gauge |
The number of heap arenas (when |
reactor.netty.bytebuf.allocator.used.direct.arenas |
Gauge |
The number of direct arenas (when |
reactor.netty.bytebuf.allocator.used.threadlocal.caches |
Gauge |
The number of thread local caches (when |
reactor.netty.bytebuf.allocator.used.tiny.cache.size |
Gauge |
The size of the tiny cache (when |
reactor.netty.bytebuf.allocator.used.small.cache.size |
Gauge |
The size of the small cache (when |
reactor.netty.bytebuf.allocator.used.normal.cache.size |
Gauge |
The size of the normal cache (when |
reactor.netty.bytebuf.allocator.used.chunk.size |
Gauge |
The chunk size for an arena (when |
The following example enables that integration:
import io.micrometer.core.instrument.Metrics;
import io.micrometer.core.instrument.config.MeterFilter;
import reactor.netty.http.client.HttpClient;
public class Application {
public static void main(String[] args) {
Metrics.globalRegistry (1)
.config()
.meterFilter(MeterFilter.maximumAllowableTags("reactor.netty.http.client", "URI", 100, MeterFilter.deny()));
HttpClient client =
HttpClient.create()
.metrics(true, s -> {
if (s.startsWith("/stream/")) { (2)
return "/stream/{n}";
}
else if (s.startsWith("/bytes/")) {
return "/bytes/{n}";
}
return s;
}); (3)
client.get()
.uri("http://httpbin.org/stream/2")
.responseContent()
.blockLast();
client.get()
.uri("http://httpbin.org/bytes/1024")
.responseContent()
.blockLast();
}
}
1 | Applies upper limit for the meters with URI tag |
2 | Templated URIs will be used as an URI tag value when possible |
3 | Enables the built-in integration with Micrometer |
In order to avoid a memory and CPU overhead of the enabled metrics, it is important to convert the real URIs to templated URIs when possible. Without a conversion to a template-like form, each distinct URI leads to the creation of a distinct tag, which takes a lot of memory for the metrics. |
Always apply an upper limit for the meters with URI tags. Configuring an upper limit on the number of meters can help in cases when the real URIs cannot be templated.
You can find more information at maximumAllowableTags .
|
When HTTP client metrics are needed for an integration with a system other than Micrometer
or you want
to provide your own integration with Micrometer
, you can provide your own metrics recorder, as follows:
import reactor.netty.channel.ChannelMetricsRecorder;
import reactor.netty.http.client.HttpClient;
import reactor.netty.http.client.HttpClientResponse;
import java.net.SocketAddress;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.metrics(true, CustomHttpClientMetricsRecorder::new); (1)
client.get()
.uri("https://httpbin.org/stream/2")
.response()
.block();
}
1 | Enables HTTP client metrics and provides HttpClientMetricsRecorder implementation. |
6.9. Unix Domain Sockets
The HTTP
client supports Unix Domain Sockets (UDS) when native transport is in use.
The following example shows how to use UDS support:
import io.netty.channel.unix.DomainSocketAddress;
import reactor.netty.http.client.HttpClient;
public class Application {
public static void main(String[] args) {
HttpClient client =
HttpClient.create()
.remoteAddress(() -> new DomainSocketAddress("/tmp/test.sock")); (1)
client.get()
.uri("/")
.response()
.block();
}
}
1 | Specifies DomainSocketAddress that will be used |
Suggest Edit to "HTTP Client"
7. UDP Server
Reactor Netty provides the easy-to-use and easy-to-configure
UdpServer
.
It hides most of the Netty functionality that is required to create a UDP
server
and adds Reactive Streams
backpressure.
7.1. Starting and Stopping
To start a UDP server, a UdpServer
instance has to be created and configured.
By default, the host is configured to be localhost
and the port is 12012
.
The following example shows how to create and start a UDP server:
import reactor.netty.Connection;
import reactor.netty.udp.UdpServer;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
Connection server =
UdpServer.create() (1)
.bindNow(Duration.ofSeconds(30)); (2)
server.onDispose()
.block();
}
}
1 | Creates a UdpServer
instance that is ready for configuring. |
2 | Starts the server in a blocking fashion and waits for it to finish initializing. |
The returned Connection
offers a simple server API, including disposeNow()
,
which shuts the server down in a blocking fashion.
7.1.1. Host and Port
In order to serve on a specific host and port, you can apply the following configuration to the UDP
server:
import reactor.netty.Connection;
import reactor.netty.udp.UdpServer;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
Connection server =
UdpServer.create()
.host("localhost") (1)
.port(8080) (2)
.bindNow(Duration.ofSeconds(30));
server.onDispose()
.block();
}
}
1 | Configures the UDP server host |
2 | Configures the UDP server port |
7.2. Writing Data
To send data to the remote peer, you must attach an I/O handler.
The I/O handler has access to UdpOutbound
,
to be able to write data.
The following example shows how to send hello
:
import io.netty.buffer.ByteBuf;
import io.netty.buffer.Unpooled;
import io.netty.channel.socket.DatagramPacket;
import io.netty.util.CharsetUtil;
import reactor.core.publisher.Mono;
import reactor.netty.Connection;
import reactor.netty.udp.UdpServer;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
Connection server =
UdpServer.create()
.handle((in, out) ->
out.sendObject(
in.receiveObject()
.map(o -> {
if (o instanceof DatagramPacket) {
DatagramPacket p = (DatagramPacket) o;
ByteBuf buf = Unpooled.copiedBuffer("hello", CharsetUtil.UTF_8);
return new DatagramPacket(buf, p.sender()); (1)
}
else {
return Mono.error(new Exception("Unexpected type of the message: " + o));
}
})))
.bindNow(Duration.ofSeconds(30));
server.onDispose()
.block();
}
}
1 | Sends a hello string to the remote peer |
7.3. Consuming Data
To receive data from a remote peer, you must attach an I/O handler.
The I/O handler has access to UdpInbound
,
to be able to read data.
The following example shows how to consume data:
import io.netty.channel.socket.DatagramPacket;
import reactor.core.publisher.Mono;
import reactor.netty.Connection;
import reactor.netty.udp.UdpServer;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
Connection server =
UdpServer.create()
.handle((in, out) ->
out.sendObject(
in.receiveObject()
.map(o -> {
if (o instanceof DatagramPacket) {
DatagramPacket p = (DatagramPacket) o;
return new DatagramPacket(p.content().retain(), p.sender()); (1)
}
else {
return Mono.error(new Exception("Unexpected type of the message: " + o));
}
})))
.bindNow(Duration.ofSeconds(30));
server.onDispose()
.block();
}
}
1 | Receives data from the remote peer |
7.4. Lifecycle Callbacks
The following lifecycle callbacks are provided to let you extend the UDP
server:
-
doOnBind
: Invoked when the server channel is about to bind. -
doOnBound
: Invoked when the server channel is bound. -
doOnUnbound
: Invoked when the server channel is unbound.
The following example uses the doOnBound
method:
import io.netty.handler.codec.LineBasedFrameDecoder;
import reactor.netty.Connection;
import reactor.netty.udp.UdpServer;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
Connection server =
UdpServer.create()
.doOnBound(conn -> conn.addHandler(new LineBasedFrameDecoder(8192))) (1)
.bindNow(Duration.ofSeconds(30));
server.onDispose()
.block();
}
}
1 | Netty pipeline is extended with LineBasedFrameDecoder when the server channel is bound. |
7.5. Connection Configuration
This section describes three kinds of configuration that you can use at the UDP level:
7.5.1. Channel Options
By default, the UDP
server is configured with the following options:
UdpServerBind() {
this.config = new UdpServerConfig(
Collections.singletonMap(ChannelOption.AUTO_READ, false),
() -> new InetSocketAddress(NetUtil.LOCALHOST, DEFAULT_PORT));
}
If you need additional options or need to change the current options, you can apply the following configuration:
import io.netty.channel.ChannelOption;
import reactor.netty.Connection;
import reactor.netty.udp.UdpServer;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
Connection server =
UdpServer.create()
.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 10000)
.bindNow(Duration.ofSeconds(30));
server.onDispose()
.block();
}
}
For more information about Netty channel options, see the following links:
7.5.2. Wire Logger
Reactor Netty provides wire logging for when the traffic between the peers has to be inspected.
By default, wire logging is disabled.
To enable it, you must set the logger reactor.netty.udp.UdpServer
level to DEBUG
and apply the following configuration:
import reactor.netty.Connection;
import reactor.netty.udp.UdpServer;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
Connection server =
UdpServer.create()
.wiretap(true) (1)
.bindNow(Duration.ofSeconds(30));
server.onDispose()
.block();
}
}
1 | Enables the wire logging |
7.5.3. Event Loop Group
By default, the UDP server uses “Event Loop Group,” where the number of the worker threads equals the number of
processors available to the runtime on initialization (but with a minimum value of 4). When you need a different configuration,
you can use one of the LoopResource#create
methods.
The default configuration for the “Event Loop Group” is the following:
* Default worker thread count, fallback to available processor
* (but with a minimum value of 4)
*/
public static final String IO_WORKER_COUNT = "reactor.netty.ioWorkerCount";
/**
* Default selector thread count, fallback to -1 (no selector thread)
*/
public static final String IO_SELECT_COUNT = "reactor.netty.ioSelectCount";
/**
* Default worker thread count for UDP, fallback to available processor
* (but with a minimum value of 4)
*/
public static final String UDP_IO_THREAD_COUNT = "reactor.netty.udp.ioThreadCount";
/**
* Default quiet period that guarantees that the disposal of the underlying LoopResources
* will not happen, fallback to 2 seconds.
*/
public static final String SHUTDOWN_QUIET_PERIOD = "reactor.netty.ioShutdownQuietPeriod";
/**
* Default maximum amount of time to wait until the disposal of the underlying LoopResources
* regardless if a task was submitted during the quiet period, fallback to 15 seconds.
*/
public static final String SHUTDOWN_TIMEOUT = "reactor.netty.ioShutdownTimeout";
/**
* Default value whether the native transport (epoll, kqueue) will be preferred,
* fallback it will be preferred when available
*/
public static final String NATIVE = "reactor.netty.native";
If you need changes to these settings, you can apply the following configuration:
import reactor.netty.Connection;
import reactor.netty.resources.LoopResources;
import reactor.netty.udp.UdpServer;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
LoopResources loop = LoopResources.create("event-loop", 1, 4, true);
Connection server =
UdpServer.create()
.runOn(loop)
.bindNow(Duration.ofSeconds(30));
server.onDispose()
.block();
}
}
7.6. Metrics
The UDP server supports built-in integration with Micrometer
.
It exposes all metrics with a prefix of reactor.netty.udp.server
.
The following table provides information for the UDP server metrics:
metric name | type | description |
---|---|---|
reactor.netty.udp.server.data.received |
DistributionSummary |
Amount of the data received, in bytes |
reactor.netty.udp.server.data.sent |
DistributionSummary |
Amount of the data sent, in bytes |
reactor.netty.udp.server.errors |
Counter |
Number of errors that occurred |
These additional metrics are also available:
ByteBufAllocator
metrics
metric name | type | description |
---|---|---|
reactor.netty.bytebuf.allocator.used.heap.memory |
Gauge |
The number of the bytes of the heap memory |
reactor.netty.bytebuf.allocator.used.direct.memory |
Gauge |
The number of the bytes of the direct memory |
reactor.netty.bytebuf.allocator.used.heap.arenas |
Gauge |
The number of heap arenas (when |
reactor.netty.bytebuf.allocator.used.direct.arenas |
Gauge |
The number of direct arenas (when |
reactor.netty.bytebuf.allocator.used.threadlocal.caches |
Gauge |
The number of thread local caches (when |
reactor.netty.bytebuf.allocator.used.tiny.cache.size |
Gauge |
The size of the tiny cache (when |
reactor.netty.bytebuf.allocator.used.small.cache.size |
Gauge |
The size of the small cache (when |
reactor.netty.bytebuf.allocator.used.normal.cache.size |
Gauge |
The size of the normal cache (when |
reactor.netty.bytebuf.allocator.used.chunk.size |
Gauge |
The chunk size for an arena (when |
The following example enables that integration:
import reactor.netty.Connection;
import reactor.netty.udp.UdpServer;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
Connection server =
UdpServer.create()
.metrics(true) (1)
.bindNow(Duration.ofSeconds(30));
server.onDispose()
.block();
}
}
1 | Enables the built-in integration with Micrometer |
When UDP server metrics are needed for an integration with a system other than Micrometer
or you want
to provide your own integration with Micrometer
, you can provide your own metrics recorder, as follows:
import reactor.netty.Connection;
import reactor.netty.channel.ChannelMetricsRecorder;
import reactor.netty.udp.UdpServer;
import java.net.SocketAddress;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
Connection server =
UdpServer.create()
.metrics(true, CustomChannelMetricsRecorder::new) (1)
.bindNow(Duration.ofSeconds(30));
server.onDispose()
.block();
}
1 | Enables UDP server metrics and provides ChannelMetricsRecorder implementation. |
Suggest Edit to "UDP Server"
8. UDP Client
Reactor Netty provides the easy-to-use and easy-to-configure
UdpClient
.
It hides most of the Netty functionality that is required to create a UDP
client
and adds Reactive Streams backpressure.
8.1. Connecting and Disconnecting
To connect the UDP client to a given endpoint, you must create and configure a
UdpClient instance.
By default, the host is configured for localhost
and the port is 12012
.
The following example shows how to create and connect a UDP client:
import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
Connection connection =
UdpClient.create() (1)
.connectNow(Duration.ofSeconds(30)); (2)
connection.onDispose()
.block();
}
}
1 | Creates a UdpClient
instance that is ready for configuring. |
2 | Connects the client in a blocking fashion and waits for it to finish initializing. |
The returned Connection
offers a simple connection API, including disposeNow()
,
which shuts the client down in a blocking fashion.
8.1.1. Host and Port
To connect to a specific host
and port
, you can apply the following configuration to the UDP
client:
import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
Connection connection =
UdpClient.create()
.host("example.com") (1)
.port(80) (2)
.connectNow(Duration.ofSeconds(30));
connection.onDispose()
.block();
}
}
1 | Configures the host to which this client should connect |
2 | Configures the port to which this client should connect |
8.2. Writing Data
To send data to a given peer, you must attach an I/O handler.
The I/O handler has access to UdpOutbound
,
to be able to write data.
The following example shows how to send hello
:
import reactor.core.publisher.Mono;
import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
Connection connection =
UdpClient.create()
.host("example.com")
.port(80)
.handle((udpInbound, udpOutbound) -> udpOutbound.sendString(Mono.just("hello"))) (1)
.connectNow(Duration.ofSeconds(30));
connection.onDispose()
.block();
}
}
1 | Sends hello string to the remote peer. |
8.3. Consuming Data
To receive data from a given peer, you must attach an I/O handler.
The I/O handler has access to UdpInbound
,
to be able to read data.
The following example shows how to consume data:
import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
Connection connection =
UdpClient.create()
.host("example.com")
.port(80)
.handle((udpInbound, udpOutbound) -> udpInbound.receive().then()) (1)
.connectNow(Duration.ofSeconds(30));
connection.onDispose()
.block();
}
}
1 | Receives data from a given peer |
8.4. Lifecycle Callbacks
The following lifecycle callbacks are provided to let you extend the UDP
client:
-
doOnConnect
: Invoked when the channel is about to connect. -
doOnConnected
: Invoked after the channel has been connected. -
doOnDisconnected
: Invoked after the channel has been disconnected.
The following example uses the doOnConnected
method:
import io.netty.handler.codec.LineBasedFrameDecoder;
import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
Connection connection =
UdpClient.create()
.host("example.com")
.port(80)
.doOnConnected(conn -> conn.addHandler(new LineBasedFrameDecoder(8192))) (1)
.connectNow(Duration.ofSeconds(30));
connection.onDispose()
.block();
}
}
1 | The Netty pipeline is extended with LineBasedFrameDecoder when the channel has been connected. |
8.5. Connection Configuration
This section describes three kinds of configuration that you can use at the UDP level:
8.5.1. Channel Options
By default, the UDP
client is configured with the following options:
UdpClientConnect() {
this.config = new UdpClientConfig(
ConnectionProvider.newConnection(),
Collections.singletonMap(ChannelOption.AUTO_READ, false),
() -> new InetSocketAddress(NetUtil.LOCALHOST, DEFAULT_PORT));
}
If you need additional options or need to change the current options, you can apply the following configuration:
import io.netty.channel.ChannelOption;
import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
Connection connection =
UdpClient.create()
.host("example.com")
.port(80)
.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 10000)
.connectNow(Duration.ofSeconds(30));
connection.onDispose()
.block();
}
}
You can find more about Netty channel options at the following links:
8.5.2. Wire Logger
Reactor Netty provides wire logging for when the traffic between the peers has to be inspected.
By default, wire logging is disabled.
To enable it, you must set the logger reactor.netty.udp.UdpClient
level to DEBUG
and apply the following configuration:
import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
Connection connection =
UdpClient.create()
.host("example.com")
.port(80)
.wiretap(true) (1)
.connectNow(Duration.ofSeconds(30));
connection.onDispose()
.block();
}
}
1 | Enables the wire logging |
8.5.3. Event Loop Group
By default, the UDP client uses “Event Loop Group,” where the number of the worker threads equals the number of
processors available to the runtime on initialization (but with a minimum value of 4). When you need a different configuration,
you can use one of the LoopResources
#create
methods.
The following listing shows the default configuration for the “Event Loop Group”:
* Default worker thread count, fallback to available processor
* (but with a minimum value of 4)
*/
public static final String IO_WORKER_COUNT = "reactor.netty.ioWorkerCount";
/**
* Default selector thread count, fallback to -1 (no selector thread)
*/
public static final String IO_SELECT_COUNT = "reactor.netty.ioSelectCount";
/**
* Default worker thread count for UDP, fallback to available processor
* (but with a minimum value of 4)
*/
public static final String UDP_IO_THREAD_COUNT = "reactor.netty.udp.ioThreadCount";
/**
* Default quiet period that guarantees that the disposal of the underlying LoopResources
* will not happen, fallback to 2 seconds.
*/
public static final String SHUTDOWN_QUIET_PERIOD = "reactor.netty.ioShutdownQuietPeriod";
/**
* Default maximum amount of time to wait until the disposal of the underlying LoopResources
* regardless if a task was submitted during the quiet period, fallback to 15 seconds.
*/
public static final String SHUTDOWN_TIMEOUT = "reactor.netty.ioShutdownTimeout";
/**
* Default value whether the native transport (epoll, kqueue) will be preferred,
* fallback it will be preferred when available
*/
public static final String NATIVE = "reactor.netty.native";
If you need changes to the these settings, you can apply the following configuration:
import reactor.netty.Connection;
import reactor.netty.resources.LoopResources;
import reactor.netty.udp.UdpClient;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
LoopResources loop = LoopResources.create("event-loop", 1, 4, true);
Connection connection =
UdpClient.create()
.host("example.com")
.port(80)
.runOn(loop)
.connectNow(Duration.ofSeconds(30));
connection.onDispose()
.block();
}
}
8.6. Metrics
The UDP client supports built-in integration with Micrometer
.
It exposes all metrics with a prefix of reactor.netty.udp.client
.
The following table provides information for the UDP client metrics:
metric name | type | description |
---|---|---|
reactor.netty.udp.client.data.received |
DistributionSummary |
Amount of the data received, in bytes |
reactor.netty.udp.client.data.sent |
DistributionSummary |
Amount of the data sent, in bytes |
reactor.netty.udp.client.errors |
Counter |
Number of errors that occurred |
reactor.netty.udp.client.connect.time |
Timer |
Time spent for connecting to the remote address |
reactor.netty.udp.client.address.resolver |
Timer |
Time spent for resolving the address |
These additional metrics are also available:
ByteBufAllocator
metrics
metric name | type | description |
---|---|---|
reactor.netty.bytebuf.allocator.used.heap.memory |
Gauge |
The number of the bytes of the heap memory |
reactor.netty.bytebuf.allocator.used.direct.memory |
Gauge |
The number of the bytes of the direct memory |
reactor.netty.bytebuf.allocator.used.heap.arenas |
Gauge |
The number of heap arenas (when |
reactor.netty.bytebuf.allocator.used.direct.arenas |
Gauge |
The number of direct arenas (when |
reactor.netty.bytebuf.allocator.used.threadlocal.caches |
Gauge |
The number of thread local caches (when |
reactor.netty.bytebuf.allocator.used.tiny.cache.size |
Gauge |
The size of the tiny cache (when |
reactor.netty.bytebuf.allocator.used.small.cache.size |
Gauge |
The size of the small cache (when |
reactor.netty.bytebuf.allocator.used.normal.cache.size |
Gauge |
The size of the normal cache (when |
reactor.netty.bytebuf.allocator.used.chunk.size |
Gauge |
The chunk size for an arena (when |
The following example enables that integration:
import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
Connection connection =
UdpClient.create()
.host("example.com")
.port(80)
.metrics(true) (1)
.connectNow(Duration.ofSeconds(30));
connection.onDispose()
.block();
}
}
1 | Enables the built-in integration with Micrometer |
When UDP client metrics are needed for an integration with a system other than Micrometer
or you want
to provide your own integration with Micrometer
, you can provide your own metrics recorder, as follows:
import reactor.netty.Connection;
import reactor.netty.channel.ChannelMetricsRecorder;
import reactor.netty.udp.UdpClient;
import java.net.SocketAddress;
import java.time.Duration;
public class Application {
public static void main(String[] args) {
Connection connection =
UdpClient.create()
.host("example.com")
.port(80)
.metrics(true, CustomChannelMetricsRecorder::new) (1)
.connectNow(Duration.ofSeconds(30));
connection.onDispose()
.block();
}
1 | Enables UDP client metrics and provides ChannelMetricsRecorder implementation. |
Suggest Edit to "UDP Client"